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NOTATION
A,B Constants
c Chord length
CL Lift coefficlent
CD Drag coefficient
d Spacing between the adjacent blades
1 = V-1
k Camber coefflcient
L Cavity length
Py Pressure at far upstream
Pc Cavlity pressure
g Chord length in the transformed plane
U Unilform free stream velocilty
Ug Constant cavity speed
U,V Perturbed veloclty components in the x- and y-
dlrection respectively
W =(u - 1v)/U, complex velocity function
X,y Carteslan coordinates of physical plane
yf Profile of the wetted lower blade surface
Ve Cavlity shape
Qy Angle of attack
Og Flow angle with respect to x-direction at far downstream

Y Stagger angle
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s N Coordinates In the transformed plane

= £ + 1M
, Cavitatlion number

Qd’\d‘l

Ry, Im Denote the real and lmaglnary part of the |
deslgnhated quantity &
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INTRODUCTION

In the study of turbomachines and propellers, one often
approximates the actual condltlons by consldering a two-dimen-
sional flow pact an infinite lattlce of indentical blades. The
problem of a fully wetted cascade ls well-known, but does not
seem to be extensively treated for cascades wlth cavitatlon,
Generally the occurrence of cavitatlion 1ls promoted by high fluid
veloeities and relatively low amblent pressures, Both of thane
conditions prevall in inducer pumps for misslles for example,
The purpose of this report Lls to provide an approximate method
for caleculating flow of incompressible fluld through a cascade
of cambered blades with finlte cavitles.

The difficulty in thils case can be appreclated by conslder-
ing the much simpler problem of lncompressible flow past a single
supercavitatirng hydrofoll. The only exact analytical method
known, based on certaln artificlal models of cavity termination,

5 the hodograph technlque, which is rather complex. To golve
such complex problems, one usually introduces sultable approxl-
mations. The most convenlent of them 1s the linearlzed, closed-
cavity theory of Tulin (1953). Reallzing the compllcatlon in-
volved, a simllar approximatica 1s made ln the present analysls.
The problem c¢f findlng the cascade flow characterlstics 1s then

reduced to one of guadratures.

Tt is almost needless to say that the method 1s inherently
limited in its applications because L1t 1s based on the agsumptlion
of small thickness of the blades belng treated and relatively
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small disturbances belng generated, However, in practlee, the
pump, turbine or propeller biades are thin and consequently the
linearized results may be useful as a gulde in the design of
turbomachines and propellers,

GENERAL FORMULATIONS

Consider the flow schematilcally 1llustrated 1n Flgure 1.
The cascade consilsts of an infinlte array of 1ldentilcal cambered
blades having a stagger angle v and an angle of attack oy . The
mean chord length of each blade 18 ¢ and the spacing of the
blades in the directlion of the stagger angle ls d. The flow ls
turned by the cascade from Llts origlnal horizontal directlon
and veloclty Ui at upstream infinlty to the directlion ¢z and ve-
loclty Uz at a locatlen far downstream,

In the analysis to be developed, 1t 1= azsumed that the
blade and cavity, with length 4 > ¢, are equlvalent to a slender
body which causes only small disturbances in an otherwlse uni-
foru stream. As a first approxlmation the boundary condltlons
may be applied on the x-axls lnstead of on the slender body. If
the cavitlies are assumed to be detached from the sharp leadlng
and tralling edges of each blade, the llnearized boundary condl-
tlions on the wetted lower surface bf each cavitating blade may
be expressed as:

LRI E L ettt iy g s D L b S el e
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On the cavity the boundary condition 1s:

éﬁ = 0O 0<x<24 , ym= O+ and c<x<4 , y=0
e

At upstream infinlty

e 14+ 0 e

in which

u,v = Perturbed veloclty components in the x- and
y~axls respectlvely

Uc = Constant cavity speed =V 1 + o Uy

Vo = Proflle of lower blade surface
P - Pc

g = Cavitation number = ———— << 1, a constant
%pU&a

p = fluld density

In order to insure that the cavity 1ls closed 1t 1ls also re-
quired that

' _
Uc dx = 0
body

The linearized problem hay now be stated as follows: Glven
a cawcade defined by v, A, c¢/d, o, and Ve 1t 1s required to
find the harmonic function w(x,y) = u/UC - 1 v/Uc on an infiniltely
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cennected domain which satisfies the mixed houndary conditions
on the body, the conditlions at upstream infinity and the clos-
ure condition.

The problem as formulated may be greatly simplified, (since
the flow 1s perlodic) with the ald of the conformal transforma-
tion

T -Ly 1y s
z = X + Ly = g%*[é i 22 3%;¥£4§?* 1]
1 -6/l 1 -¢/a .

which mape the multiple-connected reglon in the z-plane onto the
(=8 + 1n) plane as shown in Figures 2 an. 3, The function has

L(m/2 - 9) 1(r/2 + @)
branch points at ¢, = e and Gy = rz; € ¢oY -~

responding respectively to up- and down~stream infinity Iln the
physical z-plane, The line between {y and s 1ls a branch cut of
the mapping functlion. By crossing the cut, the value of the
logarithmic function in Equation [ 1] changes by 2mi or -2wi.
Each Rlemann sheet in the {-plane corresponds to the flow region
over a different blade-cavity body i+ the rascade. The leading
edge of the blade-cavity body ls mapyped to the orlgin of the

¢ -plane and the tralling edge to a polnt at infinlty. The junc-

ture of the lower blade surface and cavity maps to € = -8,

The linearized cascade problem 1s now reduced to that of
finding a harmonic function w(f) in the {-plane which satisfles
the following boundary condltlons:
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On the wetted surface

'\\
dyf
- = - v Pre—— - < < F—3
Im w @+ == () -s<8§<0, m=0
On the cavity
ROw=0 -«<8§< -5 and0<g<eo n=0 > [ 2]
At upstream infinity, l1.e., at ¢ = (,
Imw=0, RL W= - %
v

and the closure condition

f FV- (x)dx = -Imf w(z)dz = -Im f w(C) g—g— ¢ = 0
c

body body body o
(3]

where R4 and Im dencte the real and imaglnary part of the desig-
nated quantilty. This boundary-value problem resembles closely
that of the flow past an lsolated supercavitating hydrofoll and

ls a speclal case of the Rlemann-Hlilbert problem for a half-plane.
(Muskhelishvili, 1953).

Before giving the detalls of the general solution it 1s ex-
pedlent, first, to 1lntroduce the cascade parameters, given
originally by Cohen and Sutherland (1958), which characterize

the geometry of the cascade. These are:
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&-a-l'. 25 ;_I_f’_;_g" o ¢ l
7= = (cos v Lk 2p sin vy (4
g - {}JEE_I.Ln + 2(s/rm ) sin @ + (s/m )°
d 1 - 2(s/ra) sin © + (sg/rs)?

) -1 = (s/m ) cos @ -1 (s8/ra) cos ®
+ sdn oy [tan 1+ (8/m ) sin o tan 1 - (s/ra) sin w (5]

where

20”2 Ve

ry =
(@ + cos y)\[cos vy cosh 8
_ Q + cos y|?
Ta =T | "5inh 6 )

2
2

Q@ = (cosh®® - sin® v)

@ = tan"? El%_l
6 = Ln‘%} , a and b are arbltrary constants

Equation [ 4] gives the length of the slender (blade-cavity) body
as functions of given parameters v, d and b/a. Eguation [5] de-
termines the value of cherd length s in the transformed ¢ -plane

for given values of v, d, b/a and solidity c/d.
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SOLUTION OF THE BOUNDARY-VALUE PROBLEM

The general solution of the reduced boundary-value problem
stated in the previous sectlon, may be shown to be of the form

W) = - ,—%H(ﬂf sd ) R 6]

-0

where
H(C) is the fundamental solution which depends on the
flow behavior at the edge points ¢ = 0 and ¢ = -s,

P(C) is a ratlonal function which depends on the flow

behavlior at the edge polnts and x«,

The first term of Equation [ 6] 1s the particular solution
which satlsfles the mixed boundary conditlons on the real £ -axls
while the second term 1s the general solutlion of the corresponding

homogeneous problem.

In accordance with the linearlzed formulation it 1ls requlred
that w({) satlsfles the following conditions as in the case of
flow past a single foil (Tulin, 1964):

1

W)~ ¢ ? at { = 0
w(C) 1s finite at = -s (smooth Juncture condition) [7]

w(c) ~ ¢ at ¢ ==
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The functions H(¢) and P(¢) then take the forms

C + 8
¢

I
—~
™

Il

1
8l

P(C) = AC + B

where A and B are real constants. The general solutlon of the

boundary-value problem, in thls case, becomes

0

. dyf (t))
-y + =\
w(g)=m/€——g—3 -%—f tf‘xg W/t;ts dt + AC + B

-8

L9l
which should, in addition, satlsfy
uniform flow condition at upstream infinity
RL w(C,) = - %- L 10]
Im w(€,) = O [11]
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and the closure condition

-Im fr w(¢) g§-= -Tm -}r w(¢) %g d = 0, or

Body about
€y, and Cau

Im [2W1 g%»e'iy (w(Cm) . W(Ca){‘= ~d Rb{é'iy % + W(Ga)ﬂ = 0

[ 12]

Equations [10], [11] and [12] give uniquely, the values of A, B
and o. For a prescribed oncoming flow dlrectlon, body shape,
cavity length and cascade geometry the flow field w(¢) 1s, there-
fore, completely determlned.

In the case of flat plate cascade, 1l.e., dyf/dx = 0, the
complex veloclty fleld 1g of the form

w(c) = 17/ ¢ Z 5 [a (1 -Ve i S) + AC + B}

which, together with Equations [10], [11] and [12], may be shown
to yleld a solution identical to that gilven by Cohen and
Sutherland (1958).

The 1ift, experienced by the blade as a result of fluld flow,

1s gilven to a first order of approximation, in non-dimenslonal

form, by
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_ e _ 2 ” _.2 dz
¢, = =-ZRt j w(z)dz-ﬂ-cmf w(c) &

%pchc
body body
- 2 -y (g, - 2 :
= 57z In [e 5 - w(ga))] = Te/d)eos Im w(€s ) (137

Within the framework of linearlzed theory the drag coeffl-
clent may be expressed as

c -9

_ Dreg _ _1 A 2 dz
C. = = - = Im;/’ﬁw(z)]adz = - = ImJ[.Ew(C)] T ac L1417

@ 0

Similarly the upper and lower cavity shapes can be approxl-
mated by the followlng equatlons:

b X x(g,O) h
dyc + dz
Y, | =J[. T = —Imd/‘w(x,o Jax = —ImJ[—w(C) a dag
upper .
o o] ®] > ElS]
, O
", ' (x,07)a T ng) )dz a
N = - = =Im w(x, X = -Im W =
C1ower dx Jr ds S
c C -3

The exit flow velocity UQ/UC and angle oz are approximately

%3— ={[ (1 - %) + RL w((ég)};3 + [-—Im w(Ca )}2}%

= {:[(1 -0) + (-Im w(Cs )tan B}a + [—Im w(Ca ) ]i} - [16]
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ang
4 = sint [—Im W(Qa)],é “Im w(Cs )
U'g/'Uc
= - % Cr, (%) cos vy (17]
respectively,

SOME NUMERICAL RESULTS AND DISCUSSTIONS

The method of calculating the flow fleld around a supercavi-
tating cascade, as presented in the previous sectlons, 1s stralght-
forward. The solution is In many respects similar to that glven
for isolated supercavitating hydrofolls. The calculatlons gen-
erally involve only numerical lntegrations and slmple algebralc

operations.

Computations were performed for blades with lower surface
nlope of the following types:

(1) dy,
ax

Ii
O

(flat-plate)

(I1) Eii 16
dx o

(III) dy |
ik S B (1 + 4VE g =

X
= (eircular-arc camber)

(two-term camber)
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(Iv) dy a
f 2 X X X ,
= 3 K \1 - 6“V[:’+ 32 z " 32’\/;~)(three~term camber)

ay a3
f i x X X
(V) =gkl - 16\/—5-_+ 120 - 368\/;-:
3 8
+512£_._ 256-\/—22
e? c

The constant k in these equatlons 1s the camber coeffilclent

(five-term camber)

which, 1n 1solated cases, represents the so-called deslign 1ift
coefficlent (for detalls see Johnson, 1961). The effects of
blade profiles on 1ift coefficlent are substantlal., Some of the
typical calculatlions are shown in Figure 4. The results seem to
indicate that hilgher term cambered blades glve hlgher 1ift coef-
flclents. It 1s to be noted however, that the forward portlon
of higher term cambered blade 1ls very thin. The strength of
blade structure may therefore become an ilmportant factor 1in the

final design of the supercavitatling cascade.

One cof the primary ilnterests 1in the cascade analysls is,
of course, the behavior of 1ift coefflclent with different
cascade geometrles, Flgure 5 1llustrates the 11ft coefflclent
for supeircavlitating cascades of flat plate and circular arc
blades as functlons of stagger angle and solldity. In general
the cascade geometry has marked influence on cascade performance.
The interference effect 1s larger for larger stagger angles and
soliditles.
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The effect of cavlity length on cascade performsnces 1ls also
of practical interest. Some of the theoretlcal calculatlons are
deplcted in Figures 6 and 7. It 1s found in general, that the
11ft coefficlent and cavitation number decrease Wlith lncreasing
cavity length and approach rather rapldly to certaln asymptotlc
values., Also shown in Flgures 6a and Ta are experimental data
of Wade and Acosta (1966) for supercavitating flat plate cas-
cades. The theoretlcal predictlons are ln reasonably good agree-
ment with experimental findings.

CONCLUDING REMARKS

In the present study a llnearized theory of supercavitating
flow past a stralght cascade with arbitrary blade shapes 1ls de-
veloped. From the analysils, 1t 1s posslble to determlne the 11ft
and drag coefflclents, cavitatlion number, cavity shape and exlt
flow condltlons for any gilven specific cascade geometry, blade
shape, cavlty length and 1lnltlal inflow condltions, The cavl-
tating performance of the cascade 1ls, in general, found to de-
pend strongly on stagger angle, solldlty, blade shape and cavilty
length.

It 1s needless to say that the present analysis 1is limited
to cases 1n which the disturbance, caused by the presence of the
blade, 1s small — an inherent restriction in the llnear approx-
imation. However, 1in practice the pump, turblne or propeller
blades are quite thin and the linearized results obtained serve
as a gulde to the designer and ald in the interpretation of test

results obtalned for supercaVitating pumps and turbines.
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FIGURE 4 - LIFT COEFFICIENT FOR SUPERCAVITATING CASCADE WITH
FLAT PLATE AND CAMBERED BLADES
(y=30°, ¢/d=0.51, £/c=13.406)
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FIGURE éa - LIFT COEFFICIENT FOR SUPERCAVITATING CASCADE WITH FLAT PLATE
AS A FUNCTION OF CAVITY LENGTH
(y=45°, c/d=0.625)
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ARC BLADES AS A FUNCTION OF CAVITY LENGTH
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